When.com Web Search

  1. Ads

    related to: functional central limit theorem pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Donsker's theorem - Wikipedia

    en.wikipedia.org/wiki/Donsker's_theorem

    Donsker's invariance principle for simple random walk on .. In probability theory, Donsker's theorem (also known as Donsker's invariance principle, or the functional central limit theorem), named after Monroe D. Donsker, is a functional extension of the central limit theorem for empirical distribution functions.

  3. Donsker classes - Wikipedia

    en.wikipedia.org/wiki/Donsker_classes

    Donsker's theorem states that the empirical distribution function, when properly normalized, converges weakly to a Brownian bridge—a continuous Gaussian process. This is significant as it assures that results analogous to the central limit theorem hold for empirical processes, thereby enabling asymptotic inference for a wide range of ...

  4. Large deviations theory - Wikipedia

    en.wikipedia.org/wiki/Large_deviations_theory

    The central limit theorem can provide more detailed information about the behavior of than the law of large numbers. For example, we can approximately find a tail probability of M N {\displaystyle M_{N}} – the probability that M N {\displaystyle M_{N}} is greater than some value x {\displaystyle x} – for a fixed value of N {\displaystyle N} .

  5. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the ...

  6. Law of the iterated logarithm - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_iterated_logarithm

    The law of iterated logarithms operates "in between" the law of large numbers and the central limit theorem.There are two versions of the law of large numbers — the weak and the strong — and they both state that the sums S n, scaled by n −1, converge to zero, respectively in probability and almost surely:

  7. Asymptotic distribution - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_distribution

    The central limit theorem gives only an asymptotic distribution. As an approximation for a finite number of observations, it provides a reasonable approximation only when close to the peak of the normal distribution; it requires a very large number of observations to stretch into the tails.

  8. Delta method - Wikipedia

    en.wikipedia.org/wiki/Delta_method

    Demonstration of this result is fairly straightforward under the assumption that () is differentiable near the neighborhood of and ′ is continuous at with ′ ().To begin, we use the mean value theorem (i.e.: the first order approximation of a Taylor series using Taylor's theorem):

  9. Independent component analysis - Wikipedia

    en.wikipedia.org/wiki/Independent_component_analysis

    Normality: According to the Central Limit Theorem, the distribution of a sum of independent random variables with finite variance tends towards a Gaussian distribution. Loosely speaking, a sum of two independent random variables usually has a distribution that is closer to Gaussian than any of the two original variables.