Search results
Results From The WOW.Com Content Network
A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. [1] A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source.
This means that the time constant is the time elapsed after 63% of V max has been reached Setting for t = for the fall sets V(t) equal to 0.37V max, meaning that the time constant is the time elapsed after it has fallen to 37% of V max. The larger a time constant is, the slower the rise or fall of the potential of a neuron.
The current flowing through an RC circuit or RL circuit decays with a half-life of ln(2)RC or ln(2)L/R, respectively. For this example the term half time tends to be used rather than "half-life", but they mean the same thing.
The AC current density J in a conductor decreases exponentially from its value at the surface J S according to the depth d from the surface, as follows: [4]: 362 = (+) / where is called the skin depth which is defined as the depth below the surface of the conductor at which the current density has fallen to 1/e (about 0.37) of J S.
Where is the depolarization at = (point of current injection), e is the exponential constant (approximate value 2.71828) and is the voltage at a given distance x from x=0. When x = λ {\displaystyle x=\lambda } then
This means that the length constant is the distance at which 63% of V max has been reached during the rise of voltage. Setting for x = λ for the fall of voltage sets V(x) equal to .37 V max, meaning that the length constant is the distance at which 37% of V max has been reached during the fall of voltage.
Clock signal and legend. In electronics and especially synchronous digital circuits, a clock signal (historically also known as logic beat) [1] is an electronic logic signal (voltage or current) which oscillates between a high and a low state at a constant frequency and is used like a metronome to synchronize actions of digital circuits.
i.e. the transverse magnetization vector drops to 37% of its original magnitude after one time constant T 2. T 2 relaxation is a complex phenomenon, but at its most fundamental level, it corresponds to a decoherence of the transverse nuclear spin magnetization.