Search results
Results From The WOW.Com Content Network
The same term can also be used more informally to refer to something "standard" or "classic". For example, one might say that Euclid's proof is the "canonical proof" of the infinitude of primes. There are two canonical proofs that are always used to show non-mathematicians what a mathematical proof is like:
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
Another approach is taken by the von Neumann–Bernays–Gödel axioms (NBG); classes are the basic objects in this theory, and a set is then defined to be a class that is an element of some other class. However, the class existence axioms of NBG are restricted so that they only quantify over sets, rather than over all classes.
A probabilistic proof is one in which an example is shown to exist, with certainty, by using methods of probability theory. Probabilistic proof, like proof by construction, is one of many ways to prove existence theorems. In the probabilistic method, one seeks an object having a given property, starting with a large set of candidates.
See § Brackets for examples of use. Most symbols have two printed versions. They can be displayed as Unicode characters, or in LaTeX format. With the Unicode version, using search engines and copy-pasting are easier. On the other hand, the LaTeX rendering is often much better (more aesthetic), and is generally considered a standard in mathematics.
The class of all graphs forms another concrete category, where morphisms are graph homomorphisms (i.e., mappings between graphs which send vertices to vertices and edges to edges in a way that preserves all adjacency and incidence relations). Other examples of concrete categories are given by the following table.
A superscript is understood to be grouped as long as it continues in the form of a superscript. For example if an x has a superscript of the forma+b, the sum is the exponent. For example: x 2+3, it is understood that the 2+3 is grouped, and that the exponent is the sum of 2 and 3. These rules are understood by all mathematicians.
A representation of the relation among complexity classes. This is a list of complexity classes in computational complexity theory. For other computational and complexity subjects, see list of computability and complexity topics. Many of these classes have a 'co' partner which consists of the complements of all languages in the original class ...