Search results
Results From The WOW.Com Content Network
A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of ... permeable, or semi-permeable ...
Another thermodynamic operation is a removal of an initially separating wall, a manipulation that unites two systems into one undivided system. A typical thermodynamic process consists of a redistribution that spreads a conserved quantity between a system and its surroundings across a previously impermeable but newly semi-permeable wall between ...
In thermodynamics, a diathermal wall between two thermodynamic systems allows heat transfer but does not allow transfer of matter across it.. The diathermal wall is important because, in thermodynamics, it is customary to assume a priori, for a closed system, the physical existence of transfer of energy across a wall that is impermeable to matter but is not adiabatic, transfer which is called ...
Donnan equilibrium across a cell membrane (schematic). The Gibbs–Donnan effect (also known as the Donnan's effect, Donnan law, Donnan equilibrium, or Gibbs–Donnan equilibrium) is a name for the behaviour of charged particles near a semi-permeable membrane that sometimes fail to distribute evenly across the two sides of the membrane. [1]
That a state of internal thermodynamic equilibrium of a body have a well defined internal energy, that is postulated by the first law of thermodynamics. The universality of the law of conservation of energy. The recognition of work as a form of energy transfer. The universal irreversibility of natural processes. The existence of adiabatic ...
One theoretical means would be through an ideal semi-permeable membrane. [11]: 217 It should allow passage, backwards and forwards, of one species, while passage of the other is prevented entirely. The entirety of prevention should include perfect efficacy over a practically infinite time, in view of the nature of thermodynamic equilibrium.
A thermodynamic system is a macroscopic object, the microscopic details of which are not explicitly considered in its thermodynamic description. The number of state variables required to specify the thermodynamic state depends on the system, and is not always known in advance of experiment; it is usually found from experimental evidence.
It is (in principle) easy to measure whether or not two regions (for example, two glasses of water) have the same electrochemical potential for a certain chemical species (for example, a solute molecule): Allow the species to freely move back and forth between the two regions (for example, connect them with a semi-permeable membrane that lets ...