Search results
Results From The WOW.Com Content Network
Radius of curvature sign convention for optical design. Radius of curvature (ROC) has specific meaning and sign convention in optical design. A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis. The vertex of the lens surface is located on the local optical axis.
The sign of the weight of a tensor density, such as the weight of the determinant of the covariant metric tensor. The active and passive sign convention of current, voltage and power in electrical engineering. A sign convention used for curved mirrors assigns a positive focal length to concave mirrors and a negative focal length to convex mirrors.
Spherical mirrors, however, suffer from spherical aberration—parallel rays reflected from such mirrors do not focus to a single point. For parallel rays, such as those coming from a very distant object, a parabolic reflector can do a better job. Such a mirror can focus incoming parallel rays to a much smaller spot than a spherical mirror can.
For mirrors with parabolic surfaces, parallel rays incident on the mirror produce reflected rays that converge at a common focus. Other curved surfaces may also focus light, but with aberrations due to the diverging shape causing the focus to be smeared out in space. In particular, spherical mirrors exhibit spherical aberration. Curved mirrors ...
In particular, spherical mirrors exhibit spherical aberration. Curved mirrors can form images with a magnification greater than or less than one, and the magnification can be negative, indicating that the image is inverted. An upright image formed by reflection in a mirror is always virtual, while an inverted image is real and can be projected ...
A star diagonal, erecting lens or diagonal mirror is an angled mirror or prism used in telescopes that allows viewing from a direction that is perpendicular to the usual eyepiece axis. It allows more convenient and comfortable viewing when the telescope is pointed at, or near the zenith (i.e. directly overhead).
The first were proposed in 1935 by Maurice Paul. [1] The basic idea behind Paul's solution is that spherical mirrors, with an aperture stop at the centre of curvature, have only spherical aberration – no coma or astigmatism (but they do produce an image on a curved surface of half the radius of curvature of the spherical mirror).
They showed that the mirror reflection point can be computed by solving an eighth degree equation in the most general case. If the camera (eye) is placed on the axis of the mirror, the degree of the equation reduces to six. [15] Alhazen's problem can also be extended to multiple refractions from a spherical ball.