When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Particle in a ring - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_ring

    The case of a particle in a one-dimensional ring is an instructive example when studying the quantization of angular momentum for, say, an electron orbiting the nucleus. The azimuthal wave functions in that case are identical to the energy eigenfunctions of the particle on a ring.

  3. Abraham–Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Abraham–Lorentz_force

    The Lorentz self-force derived for non-relativistic velocity approximation , is given in SI units by: = ˙ = ˙ = ˙ or in Gaussian units by = ˙. where is the force, ˙ is the derivative of acceleration, or the third derivative of displacement, also called jerk, μ 0 is the magnetic constant, ε 0 is the electric constant, c is the speed of light in free space, and q is the electric charge of ...

  4. Semicircular potential well - Wikipedia

    en.wikipedia.org/wiki/Semicircular_potential_well

    If a particle is confined to the motion of an entire ring ranging from 0 to , the particle is subject only to a periodic boundary condition (see particle in a ring). If a particle is confined to the motion of − π 2 {\textstyle -{\frac {\pi }{2}}} to π 2 {\textstyle {\frac {\pi }{2}}} , the issue of even and odd parity becomes important.

  5. List of particles - Wikipedia

    en.wikipedia.org/wiki/List_of_particles

    Since then, the particle has been shown to behave, interact, and decay in many of the ways predicted for Higgs particles by the Standard Model, as well as having even parity and zero spin, two fundamental attributes of a Higgs boson. This also means it is the first elementary scalar particle discovered in nature.

  6. Classical central-force problem - Wikipedia

    en.wikipedia.org/wiki/Classical_central-force...

    In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.

  7. Particle in a box - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_box

    Some trajectories of a particle in a box according to Newton's laws of classical mechanics (A), and according to the Schrödinger equation of quantum mechanics (B–F). In (B–F), the horizontal axis is position, and the vertical axis is the real part (blue) and imaginary part (red) of the wave function.

  8. Relativistic Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Lagrangian...

    The definition of a generalized momentum can be retained, and the advantageous connection between cyclic coordinates and conserved quantities will continue to apply. The momenta can be used to "reverse-engineer" the Lagrangian. For the case of the free massive particle, in Cartesian coordinates, the x component of relativistic momentum is

  9. Particle in a one-dimensional lattice - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_one...

    In quantum mechanics, the particle in a one-dimensional lattice is a problem that occurs in the model of a periodic crystal lattice.The potential is caused by ions in the periodic structure of the crystal creating an electromagnetic field so electrons are subject to a regular potential inside the lattice.