Search results
Results From The WOW.Com Content Network
Human impact on the nitrogen cycle is diverse. Agricultural and industrial nitrogen (N) inputs to the environment currently exceed inputs from natural N fixation . [ 1 ] As a consequence of anthropogenic inputs, the global nitrogen cycle (Fig. 1) has been significantly altered over the past century.
The ocean can be described as the world's largest ecosystem and it is home for many species of marine life. Different activities carried out and caused by human beings such as global warming, ocean acidification, and pollution affect marine life and its habitats. For the past 50 years, more than 90 percent of global warming resulting from human ...
The nitrogen cycle is of particular interest to ecologists because nitrogen availability can affect the rate of key ecosystem processes, including primary production and decomposition. Human activities such as fossil fuel combustion, use of artificial nitrogen fertilizers, and release of nitrogen in wastewater have dramatically altered the ...
The nitrogen cycle is of particular interest to ecologists because nitrogen availability can affect the rate of key ecosystem processes, including primary production and decomposition. Human activities such as fossil fuel combustion, use of artificial nitrogen fertilizers, and release of nitrogen in wastewater have dramatically altered the ...
A biogeochemical cycle, or more generally a cycle of matter, [1] is the movement and transformation of chemical elements and compounds between living organisms, the atmosphere, and the Earth's crust. Major biogeochemical cycles include the carbon cycle, the nitrogen cycle and the water cycle. In each cycle, the chemical element or molecule is ...
In the northern, western hemisphere, it is called the Atlantic Meridional Overturning Circulation (AMOC). The AMOC is a critical part of the Earth’s energy balance which regulates the climate.
The impact of human activity on the chemistry of the Earth's oceans has increased over time, with pollution from industry and various land-use practices significantly affecting the oceans. Moreover, increasing levels of carbon dioxide in the Earth's atmosphere have led to ocean acidification, which has negative effects on marine ecosystems.
[7] [6] N 2 production from denitrification and anammox closes the nitrogen cycle by reducing the nitrogen available in organic matter fixed by phytoplankton at the surface ocean. Denitrification in OMZs leads to a significant loss of inorganic nitrogen from the oceans, limiting growth/productivity in many regions around the world.