Search results
Results From The WOW.Com Content Network
After prompt fission neutron emission the residual fragments are still neutron rich and undergo a beta decay chain. The more neutron rich the fragment, the more energetic and faster the beta decay. In some cases the available energy in the beta decay is high enough to leave the residual nucleus in such a highly excited state that neutron ...
In nuclear engineering, a prompt neutron is a neutron immediately emitted by a nuclear fission event. Prompt neutrons emerge from the fission of an unstable fissionable or fissile heavy nucleus almost instantaneously. Delayed neutron decay can occur within the same context, emitted after beta decay of one of the fission products.
In nuclear engineering, prompt criticality describes a nuclear fission event in which criticality (the threshold for an exponentially growing nuclear fission chain reaction) is achieved with prompt neutrons alone and does not rely on delayed neutrons. As a result, prompt supercriticality causes a much more rapid growth in the rate of energy ...
A subcritical mass is a mass that does not have the ability to sustain a fission chain reaction. A population of neutrons introduced to a subcritical assembly will exponentially decrease. In this case, known as subcriticality, k < 1. A critical mass is a mass of fissile material that self-sustains a fission chain reaction.
The prompt neutron lifetime in a modern thermal reactor is about 10 −4 seconds, thus it is not feasible to control reactor behavior with prompt neutrons alone. Reactor time behavior can be characterized by weighing the prompt and delayed neutron yield fractions to obtain the average neutron lifetime, Λ=l/k, or the mean generation time ...
In nuclear engineering, a delayed neutron is a neutron emitted after a nuclear fission event, by one of the fission products (or actually, a fission product daughter after beta decay), any time from a few milliseconds to a few minutes after the fission event. Neutrons born within 10 −14 seconds of the fission are termed "prompt neutrons".
By definition, reactivity of zero dollars is just barely on the edge of criticality using both prompt and delayed neutrons. A reactivity less than zero dollars is subcritical; the power level will decrease exponentially and a sustained chain reaction will not occur. One dollar is defined as the threshold between delayed and prompt criticality.
The neutrons are usually classified in 6 delayed neutron groups. [4] The average neutron lifetime considering delayed neutrons is approximately 0.1 sec, which makes the chain reaction relatively easy to control over time. The remaining 993 prompt neutrons are released very quickly, approximately 1 μs after the fission event.