Ad
related to: reflection vs diffraction scattering of light examples for kids printable
Search results
Results From The WOW.Com Content Network
Polishing produces some specular reflection, but the remaining light continues to be diffusely reflected. The most general mechanism by which a surface gives diffuse reflection does not involve exactly the surface: most of the light is contributed by scattering centers beneath the surface, [2] [3] as illustrated in Figure 1
The decadic absorbance of a scattering sample is defined as −log 10 (R+T) or −log 10 (1−A). For a non scattering sample, R = 0, and the expression becomes −log 10 T or log( 1 / T ), which is more familiar. In a non-scattering sample, the absorbance has the property that the numerical value is proportional to sample thickness.
Many different examples exist, and there are very large fields where forward scattering dominates, in particular for electron diffraction and electron microscopy, X-ray diffraction and neutron diffraction. In these the relevant waves are transmitted through the samples.
Concentration of light, especially sunlight, can burn. The word caustic, in fact, comes from the Greek καυστός, burnt, via the Latin causticus, burning. A common situation where caustics are visible is when light shines on a drinking glass. The glass casts a shadow, but also produces a curved region of bright light.
Scattering also includes the interaction of billiard balls on a table, the Rutherford scattering (or angle change) of alpha particles by gold nuclei, the Bragg scattering (or diffraction) of electrons and X-rays by a cluster of atoms, and the inelastic scattering of a fission fragment as it traverses a thin foil.
Bragg diffraction occurs when radiation of a wavelength λ comparable to atomic spacings is scattered in a specular fashion (mirror-like reflection) by planes of atoms in a crystalline material, and undergoes constructive interference. [10] When the scattered waves are incident at a specific angle, they remain in phase and constructively interfere.
Multiple-scattering effects of light scattering by particles are treated by radiative transfer techniques (see, e.g. atmospheric radiative transfer codes). The relative size of a scattering particle is defined by its size parameter x, which is the ratio of its characteristic dimension to its wavelength:
The Ewald sphere is a geometric construction used in electron, neutron, and x-ray diffraction which shows the relationship between: the wavevector of the incident and diffracted beams, the diffraction angle for a given reflection, the reciprocal lattice of the crystal. It was conceived by Paul Peter Ewald, a German physicist and ...