When.com Web Search

  1. Ads

    related to: wind turbine wind speed requirements

Search results

  1. Results From The WOW.Com Content Network
  2. IEC 61400 - Wikipedia

    en.wikipedia.org/wiki/IEC_61400

    IEC 61400 is a set of design requirements made to ensure that wind turbines are appropriately engineered against damage from hazards within the planned lifetime. The standard concerns most aspects of the turbine life from site conditions before construction, to turbine components being tested, [ 1 ] assembled and operated.

  3. Wind turbine design - Wikipedia

    en.wikipedia.org/wiki/Wind_turbine_design

    An example of a wind turbine, this 3 bladed turbine is the classic design of modern wind turbines Wind turbine components : 1-Foundation, 2-Connection to the electric grid, 3-Tower, 4-Access ladder, 5-Wind orientation control (Yaw control), 6-Nacelle, 7-Generator, 8-Anemometer, 9-Electric or Mechanical Brake, 10-Gearbox, 11-Rotor blade, 12-Blade pitch control, 13-Rotor hub

  4. Tip-speed ratio - Wikipedia

    en.wikipedia.org/wiki/Tip-speed_ratio

    The tip-speed ratio, λ, or TSR for wind turbines is the ratio between the tangential speed of the tip of a blade and the actual speed of the wind, v. The tip-speed ratio is related to efficiency, with the optimum varying with blade design. [1] Higher tip speeds result in higher noise levels and require stronger blades due to larger centrifugal ...

  5. Wind turbine - Wikipedia

    en.wikipedia.org/wiki/Wind_turbine

    When a turbine is mounted on a rooftop the building generally redirects wind over the roof and this can double the wind speed at the turbine. If the height of a rooftop mounted turbine tower is approximately 50% of the building height it is near the optimum for maximum wind energy and minimum wind turbulence.

  6. Wind-turbine aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Wind-turbine_aerodynamics

    However, very high tip speeds also increase the drag on the blades, decreasing power production. Balancing these factors is what leads to most modern horizontal-axis wind turbines running at a tip speed ratio around 9. In addition, wind turbines usually limit the tip speed to around 80-90m/s due to leading edge erosion and high noise levels.

  7. Wind profile power law - Wikipedia

    en.wikipedia.org/wiki/Wind_profile_power_law

    The power law is often used in wind power assessments [4] [5] where wind speeds at the height of a turbine ( 50 metres) must be estimated from near surface wind observations (~10 metres), or where wind speed data at various heights must be adjusted to a standard height [6] prior to use.

  8. Variable speed wind turbine - Wikipedia

    en.wikipedia.org/wiki/Variable_speed_wind_turbine

    A variable speed wind turbine is one which is specifically designed to operate over a wide range of rotor speeds. It is in direct contrast to fixed speed wind turbine where the rotor speed is approximately constant. The reason to vary the rotor speed is to capture the maximum aerodynamic power in the wind, as the wind speed varies.

  9. Small wind turbine - Wikipedia

    en.wikipedia.org/wiki/Small_wind_turbine

    Turbine blades for small-scale wind turbines are typically 1.5 to 3.5 metres (4 ft 11 in – 11 ft 6 in) in diameter and produce 0.5-10 kW at their optimal wind speed. [1] Most small wind turbines are horizontal-axis wind turbines, [2] but vertical axis wind turbines (VAWTs) may have benefits in maintenance and placement, although they are less ...