Ad
related to: area calculator for trapezoid equation
Search results
Results From The WOW.Com Content Network
The formula was described by Albrecht Ludwig Friedrich Meister (1724–1788) in 1769 [4] and is based on the trapezoid formula which was described by Carl Friedrich Gauss and C.G.J. Jacobi. [5] The triangle form of the area formula can be considered to be a special case of Green's theorem.
A 2016 Science paper reports that the trapezoid rule was in use in Babylon before 50 BCE for integrating the velocity of Jupiter along the ecliptic. [1]In 1994, a paper titled "A Mathematical Model for the Determination of Total Area Under Glucose Tolerance and Other Metabolic Curves" was published, only to be met with widespread criticism for rediscovering the Trapezoidal Rule and coining it ...
This yields as a special case the well-known formula for the area of a triangle, by considering a triangle as a degenerate trapezoid in which one of the parallel sides has shrunk to a point. The 7th-century Indian mathematician Bhāskara I derived the following formula for the area of a trapezoid with consecutive sides a, c, b, d:
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.
Area calculator a: 3: b: 4: c: 5: s: 6: Area [2] 6.000: ... Heron's formula is also a special case of the formula for the area of a trapezoid or trapezium based only ...
Suppose that we want to solve the differential equation ′ = (,). The trapezoidal rule is given by the formula + = + ((,) + (+, +)), where = + is the step size. [1]This is an implicit method: the value + appears on both sides of the equation, and to actually calculate it, we have to solve an equation which will usually be nonlinear.
An arbitrary shape. ρ is the distance to the element dA, with projections x and y on the x and y axes.. The second moment of area for an arbitrary shape R with respect to an arbitrary axis ′ (′ axis is not drawn in the adjacent image; is an axis coplanar with x and y axes and is perpendicular to the line segment) is defined as ′ = where
The area of the trapezoid can be calculated to be half the area of the square, that is 1 2 ( b + a ) 2 . {\displaystyle {\frac {1}{2}}(b+a)^{2}.} The inner square is similarly halved, and there are only two triangles so the proof proceeds as above except for a factor of 1 2 {\displaystyle {\frac {1}{2}}} , which is removed by multiplying by two ...