When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Graph center - Wikipedia

    en.wikipedia.org/wiki/Graph_center

    These are the three vertices A such that d(A, B) ≤ 3 for all vertices B. Each black vertex is a distance of at least 4 from some other vertex. The center (or Jordan center [1]) of a graph is the set of all vertices of minimum eccentricity, [2] that is, the set of all vertices u where the greatest distance d(u,v) to other vertices v is

  3. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    The linear eccentricity of an ellipse or hyperbola, denoted c (or sometimes f or e), is the distance between its center and either of its two foci. The eccentricity can be defined as the ratio of the linear eccentricity to the semimajor axis a : that is, e = c a {\displaystyle e={\frac {c}{a}}} (lacking a center, the linear eccentricity for ...

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    For ellipses and hyperbolas a standard form has the x-axis as principal axis and the origin (0,0) as center. The vertices are (±a, 0) and the foci (±c, 0). Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2, with radius r = a = b.

  5. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.. An ellipsoid is a quadric surface; that is, a surface that may be defined as the zero set of a polynomial of degree two in three variables.

  6. Translation of axes - Wikipedia

    en.wikipedia.org/wiki/Translation_of_axes

    Given the equation + + =, by using a translation of axes, determine whether the locus of the equation is a parabola, ellipse, or hyperbola. Determine foci (or focus), vertices (or vertex), and eccentricity. Solution: To complete the square in x and y, write the equation in the form

  7. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    In other words, a point P is a focus if both PI and PJ are tangent to C. When C is a real curve, only the intersections of conjugate pairs are real, so there are m in a real foci and m 2 − m imaginary foci. When C is a conic, the real foci defined this way are exactly the foci which can be used in the geometric construction of C.

  8. Bipolar coordinates - Wikipedia

    en.wikipedia.org/wiki/Bipolar_coordinates

    The equations for x and y can be combined to give + = ⁡ (+) [2] [3] or + = ⁡ (). This equation shows that σ and τ are the real and imaginary parts of an analytic function of x+iy (with logarithmic branch points at the foci), which in turn proves (by appeal to the general theory of conformal mapping) (the Cauchy-Riemann equations) that these particular curves of σ and τ intersect at ...

  9. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.