Search results
Results From The WOW.Com Content Network
Damage to hair cells can cause damage to the vestibular system and therefore cause difficulties in balancing. However, other vertebrates, such as the frequently studied zebrafish, and birds have hair cells that can regenerate. [5] [6] The human cochlea contains on the order of 3,500 inner hair cells and 12,000 outer hair cells at birth. [7] The ...
Proliferating supporting cells can acquire hair cell fate in mitotic division. The mouse's neonatal supporting cells proliferate after hair cell death and regenerate hair cells after damage. [26] The neonatal cochlea is resistant to hair cell damage caused by exposure to noise or drugs, which are toxic to the cochlea, or auditory nerve, in vivo ...
Hearing loss associated with the cochlea is often a result of outer hair cells and inner hair cells damage or death. Outer hair cells are more susceptible to damage, which can result in less sensitivity to weak sounds. Frequency sensitivity is also affected by cochlear damage which can impair the patient's ability to distinguish between ...
The bending of the stereocilia towards the basal body of the OHC causes excitation of the hair cell. Thus, an increase in firing rate of the auditory neurons connected to the hair cell occurs. On the other hand, the bending of the stereocilia away from the basal body of the OHC causes inhibition of the hair cell.
Globally, head and neck cancer accounts for 650,000 new cases of cancer and 330,000 deaths annually on average. In 2018, it was the seventh most common cancer worldwide, with 890,000 new cases documented and 450,000 people dying from the disease. [12] The risk of developing head and neck cancer increases with age, especially after 50 years.
Hensen's cells are important in ion metabolism and homeostasis regulation of both endolymph and perilymph, modulation of the hearing sensitivity, regulation and regeneration of the hair cells, and prevention of the cochlea damage. [6] The outer hair cells of the cochlea preprocess the signal by active movements, which can be elevated by ...
The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2] Strategically positioned on the basilar membrane of the organ of Corti are three rows of outer hair cells (OHCs) and one row of inner hair cells ...
The drug is understood to damage multiple regions of the cochlea, causing the death of outer hair cells, as well as damage to the spiral ganglion neurons and cells of the stria vascularis. [27] Long-term retention of cisplatin in the cochlea may contribute to the drug's cochleotoxic potential. [28]