Search results
Results From The WOW.Com Content Network
Many circuits can be analyzed as a combination of series and parallel circuits, along with other configurations. In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [1]
Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.
Parallel RL circuit. When both the resistor and the inductor are connected in parallel connection and supplied through a voltage source, this is known as a RL parallel circuit. [2] The parallel RL circuit is generally of less interest than the series circuit unless fed by a current source.
In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.
Parallel RC circuit. The parallel RC circuit is generally of less interest than the series circuit. This is largely because the output voltage V out is equal to the input voltage V in — as a result, this circuit does not act as a filter on the input signal unless fed by a current source. With complex impedances:
In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel. It is named after Jacob Millman, who proved the theorem.
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
Most analysis methods calculate the voltage and current values for static networks, which are circuits consisting of memoryless components only but have difficulties with complex dynamic networks. In general, the equations that describe the behaviour of a dynamic circuit are in the form of a differential-algebraic system of equations (DAEs).