Search results
Results From The WOW.Com Content Network
The steam then either travels directly along and down a steam pipe to the engine unit or may first pass into the wet header of a superheater, the role of the latter being to improve thermal efficiency and eliminate water droplets suspended in the "saturated steam", the state in which it leaves the boiler. On leaving the superheater, the steam ...
Collects steam at the top of the boiler (well above the water level) so that it can be fed to the engine via the main steam pipe, or dry pipe, and the regulator/throttle valve. [2] [5] [6]: 211–212 [3]: 26 Air pump / Air compressor Westinghouse pump (US+) Powered by steam, it compresses air for operating the train air brake system.
The way the valve controlled the steam entering and leaving the cylinder was known as steam distribution and shown by the shape of the indicator diagram. What happened to the steam inside the cylinder was assessed separately from what happened in the boiler and how much friction the moving machinery had to cope with.
A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be transformed by a connecting rod and crank into rotational force for work.
A high-pressure steam locomotive is a steam locomotive with a boiler that operates at pressures well above what would be considered normal for other locomotives. Most locomotives operate with a steam pressure of 200 to 300 psi (1.38 to 2.07 MPa). [1] In the later years of steam, boiler pressures were typically 200 to 250 psi (1.38 to 1.72 MPa).
The Whyte notation is a classification method for steam locomotives, and some internal combustion locomotives and electric locomotives, by wheel arrangement. It was devised by Frederick Methvan Whyte , [ 2 ] and came into use in the early twentieth century following a December 1900 editorial in American Engineer and Railroad Journal .
The steam locomotive, as commonly employed, has its pistons directly attached to cranks on the driving wheels; thus, there is no gearing, one revolution of the driving wheels is equivalent to one revolution of the crank and thus two power strokes per piston (steam locomotives are almost universally double-acting, unlike the more familiar internal combustion engine).
As well, steam locomotive exhaust systems typically vent cylinder steam exhaust through the chimney, to enhance the draught through the boiler. Chimneys are designed to carry the exhaust steam and smoke clear of the driver's line of sight while remaining short enough to clear overhead structures. Some chimneys included apparatus to suppress the ...