When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lasso (statistics) - Wikipedia

    en.wikipedia.org/wiki/Lasso_(statistics)

    The lasso method assumes that the coefficients of the linear model are sparse, meaning that few of them are non-zero. It was originally introduced in geophysics, [2] and later by Robert Tibshirani, [3] who coined the term. Lasso was originally formulated for linear regression models. This simple case reveals a substantial amount about the ...

  3. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    If the assumptions of OLS regression hold, the solution = (), with =, is an unbiased estimator, and is the minimum-variance linear unbiased estimator, according to the Gauss–Markov theorem. The term λ n I {\displaystyle \lambda nI} therefore leads to a biased solution; however, it also tends to reduce variance.

  4. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Standard linear regression models with standard estimation techniques make a number of assumptions about the predictor variables, the response variable and their relationship. Numerous extensions have been developed that allow each of these assumptions to be relaxed (i.e. reduced to a weaker form), and in some cases eliminated entirely.

  5. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  6. Nonparametric regression - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_regression

    Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric equation is assumed for the relationship between predictors and dependent variable.

  7. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    L1 regularization (also called LASSO) leads to sparse models by adding a penalty based on the absolute value of coefficients. L2 regularization (also called ridge regression) encourages smaller, more evenly distributed weights by adding a penalty based on the square of the coefficients. [4]

  8. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    In statistics and, in particular, in the fitting of linear or logistic regression models, the elastic net is a regularized regression method that linearly combines the L 1 and L 2 penalties of the lasso and ridge methods. Nevertheless, elastic net regularization is typically more accurate than both methods with regard to reconstruction. [1]

  9. High-dimensional statistics - Wikipedia

    en.wikipedia.org/wiki/High-dimensional_statistics

    One common assumption for high-dimensional linear regression is that the vector of regression coefficients is sparse, in the sense that most coordinates of are zero. Many statistical procedures, including the Lasso, have been proposed to fit high-dimensional linear models under such sparsity assumptions.