Ad
related to: isaac newton's light theory of matter
Search results
Results From The WOW.Com Content Network
He connected these properties to several effects of the interaction of light rays with matter and vacuum. [11] [12] Newton's corpuscular theory was an elaboration of his view of reality as interactions of material points through forces. Note Albert Einstein's description of Newton's conception of physical reality:
Isaac Newton suggests the existence of an aether in the Third Book of Opticks (1st ed. 1704; 2nd ed. 1718): "Doth not this aethereal medium in passing out of water, glass, crystal, and other compact and dense bodies in empty spaces, grow denser and denser by degrees, and by that means refract the rays of light not in a point, but by bending them gradually in curve lines? ...
The major significance of Newton's work is that it overturned the dogma, attributed to Aristotle or Theophrastus and accepted by scholars in Newton's time, that "pure" light (such as the light attributed to the Sun) is fundamentally white or colourless, and is altered into color by mixture with darkness caused by interactions with matter ...
Despite his known preference of a particle theory, Newton in fact noted that light had both particle-like and wave-like properties in Opticks, and was the first to attempt to reconcile the two theories, thereby anticipating later developments of wave-particle duality, which is the modern understanding of light. [90]
Newton, and most of his contemporaries, with the notable exception of Huygens, worked on the assumption that classical mechanics would be able to explain all phenomena, including light, in the form of geometric optics. Even when discovering the so-called Newton's rings (a wave interference phenomenon) he maintained his own corpuscular theory of ...
Isaac Newton contended that light is made up of numerous small particles. This can explain such features as light's ability to travel in straight lines and reflect off surfaces. Newton imagined light particles as non-spherical "corpuscles", with different "sides" that give rise to birefringence.
Newton's corpuscular theory of light was gradually succeeded by the wave theory. It was not until the 19th century that the quantitative measurement of dispersed light was recognized and standardized. As with many subsequent spectroscopy experiments, Newton's sources of white light included flames and stars, including the Sun.
Corpuscularianism remained a dominant theory for centuries and was blended with alchemy by early scientists such as Robert Boyle and Isaac Newton in the 17th century. In his work The Sceptical Chymist (1661), Boyle abandoned the Aristotelian ideas of the classical elements —earth, water, air, and fire—in favor of corpuscularianism.