When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function that is continuous everywhere but differentiable nowhere. It is also an example of a fractal curve .

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    These statements are not, in general, true if the function is defined on an open interval (,) (or any set that is not both closed and bounded), as, for example, the continuous function () =, defined on the open interval (0,1), does not attain a maximum, being unbounded above.

  4. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    In particular, any differentiable function must be continuous at every point in its domain. The converse does not hold: a continuous function need not be differentiable. For example, a function with a bend, cusp, or vertical tangent may be continuous, but fails to be differentiable at the location of the anomaly.

  5. Pathological (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Pathological_(mathematics)

    The Weierstrass function is continuous everywhere but differentiable nowhere. In mathematics, when a mathematical phenomenon runs counter to some intuition, then the phenomenon is sometimes called pathological. On the other hand, if a phenomenon does not run counter to intuition, it is sometimes called well-behaved or nice. These terms are ...

  6. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The converse does not hold, since the function :, is, as seen above, not uniformly continuous, but it is continuous and thus Cauchy continuous. In general, for functions defined on unbounded spaces like R {\displaystyle R} , uniform continuity is a rather strong condition.

  7. Cantor function - Wikipedia

    en.wikipedia.org/wiki/Cantor_function

    The graph of the Cantor function on the unit interval. In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero ...

  8. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    A function is differentiable at an interior point a of its domain if and only if it is semi-differentiable at a and the left derivative is equal to the right derivative. An example of a semi-differentiable function, which is not differentiable, is the absolute value function () = | |, at a = 0.

  9. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (− r ) = f ( r ) , Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero.