Search results
Results From The WOW.Com Content Network
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
The E and C parameters refer, respectively, to the electrostatic and covalent contributions to the strength of the bonds that the acid and base will form. The equation is -ΔH = E A E B + C A C B + W. The W term represents a constant energy contribution for acid–base reaction such as the cleavage of a dimeric acid or base. The equation ...
A Lewis base is also a Brønsted–Lowry base, but a Lewis acid does not need to be a Brønsted–Lowry acid. The classification into hard and soft acids and bases ( HSAB theory ) followed in 1963. The strength of Lewis acid-base interactions, as measured by the standard enthalpy of formation of an adduct can be predicted by the Drago–Wayland ...
[2] [3] The basic concept of this theory is that when an acid and a base react with each other, the acid forms its conjugate base, and the base forms its conjugate acid by exchange of a proton (the hydrogen cation, or H +). This theory generalises the Arrhenius theory.
One use of conjugate acids and bases lies in buffering systems, which include a buffer solution. In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications.
According to the original formulation of Lewis, when a neutral base forms a bond with a neutral acid, a condition of electric stress occurs. [7] The acid and the base share the electron pair that formerly belonged to the base. [7] As a result, a high dipole moment is created, which can only be decreased to zero by rearranging the molecules. [7]
In organic chemistry and biochemistry, important examples include amino acids and derivatives of citric acid. Although an amphiprotic species must be amphoteric, the converse is not true. For example, a metal oxide such as zinc oxide , ZnO, contains no hydrogen and so cannot donate a proton.
Pages in category "Acid–base chemistry" The following 49 pages are in this category, out of 49 total. This list may not reflect recent changes. ...