Search results
Results From The WOW.Com Content Network
Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The n th triangular number is the number of dots in the triangular arrangement with n dots on each side, and is equal to the sum of the n natural numbers from 1 to n. The sequence of triangular numbers, starting with the 0th triangular number, is
Proof without words that a hexagonal number (middle column) can be rearranged as rectangular and odd-sided triangular numbers. A hexagonal number is a figurate number.The nth hexagonal number h n is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.
A similar pattern is observed relating to squares, as opposed to triangles. To find the pattern, one must construct an analog to Pascal's triangle, whose entries are the coefficients of (x + 2) row number, instead of (x + 1) row number. There are a couple ways to do this. The simpler is to begin with row 0 = 1 and row 1 = 1, 2.
In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a broader topic of figurate numbers representing the numbers of points forming regular patterns within different shapes.
This version of the pea pattern eventually forms a cycle with the two "atomic" terms 23322114 and 32232114. Other versions of the pea pattern are also possible; for example, instead of reading the digits as they first appear, one could read them in ascending order instead (sequence A005151 in the OEIS). In this case, the term following 21 would ...
The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
Centered hexagonal numbers appearing in the Catan board game: 19 land tiles, 37 total tiles. In mathematics and combinatorics, a centered hexagonal number, or centered hexagon number, [1] [2] is a centered figurate number that represents a hexagon with a dot in the center and all other dots surrounding the center dot in a hexagonal lattice.
Srinivasa Ramanujan discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of ends in the digit 4 or 9, the number of partitions of will be divisible by 5. [4]