Search results
Results From The WOW.Com Content Network
In aerobic respiration, the flow of electrons terminates with molecular oxygen as the final electron acceptor. In anaerobic respiration, other electron acceptors are used, such as sulfate. In an electron transport chain, the redox reactions are driven by the difference in the Gibbs free energy of reactants and products.
Anaerobic respiration is used by microorganisms, either bacteria or archaea, in which neither oxygen (aerobic respiration) nor pyruvate derivatives (fermentation) is the final electron acceptor. Rather, an inorganic acceptor such as sulfate ( SO 2− 4 ), nitrate ( NO − 3 ), or sulfur (S) is used. [ 16 ]
[1] [2] In this type of respiration, oxygen serves as the terminal electron acceptor for the electron transport chain. [1] Aerobic respiration has the advantage of yielding more energy (adenosine triphosphate or ATP) than fermentation or anaerobic respiration, [3] but obligate aerobes are subject to high levels of oxidative stress. [2]
Cells that use molecular oxygen (O 2) as their final electron acceptor are described as using aerobic respiration, while cells that use other soluble compounds as their final electron acceptor are described as using anaerobic respiration. [2] However, the final electron acceptor of an exoelectrogen is found extracellularly and can be a strong ...
In aerobic organisms undergoing respiration, electrons are shuttled to an electron transport chain, and the final electron acceptor is oxygen. Molecular oxygen is an excellent electron acceptor. Anaerobes instead use less-oxidizing substances such as nitrate (NO − 3), fumarate (C 4 H 2 O 2− 4), sulfate (SO 2− 4), or elemental sulfur (S ...
The organic or inorganic substances (e.g., oxygen) used as electron acceptors needed in the catabolic processes of aerobic or anaerobic respiration and fermentation are not taken into account here. For example, plants are lithotrophs because they use water as their electron donor for the electron transport chain across the thylakoid membrane.
Oxidative phosphorylation – The last stage of the aerobic system produces the largest yield of ATP – a total of 34 ATP molecules. It is called oxidative phosphorylation because oxygen is the final acceptor of electrons and hydrogen ions (hence oxidative) and an extra phosphate is added to ADP to form ATP (hence phosphorylation).
Paraquat, the dication on the left, functions as an electron acceptor, disrupting respiration in plants. In biology, a terminal electron acceptor often refers to either the last compound to receive an electron in an electron transport chain, such as oxygen during cellular respiration, or the last cofactor to receive an electron within the electron transfer domain of a reaction center during ...