Search results
Results From The WOW.Com Content Network
According to the de Moivre–Laplace theorem, as n grows large, the shape of the discrete distribution converges to the continuous Gaussian curve of the normal distribution. In probability theory , the de Moivre–Laplace theorem , which is a special case of the central limit theorem , states that the normal distribution may be used as an ...
In effect de Moivre proved a special case of the central limit theorem. Sometimes his result is called the theorem of de Moivre–Laplace . A third edition was published posthumously in 1756 by A. Millar, and ran for 348 pages; additional material in this edition included an application of probability theory to actuarial science in the ...
The title comes from the contemporary use of the phrase "doctrine of chances" to mean the theory of probability, which had been introduced via the title of a book by Abraham de Moivre. Contemporary reprints of the essay carry a more specific and significant title: A Method of Calculating the Exact Probability of All Conclusions Founded on ...
Abraham de Moivre was born in Vitry-le-François in Champagne on 26 May 1667. His father, Daniel de Moivre, was a surgeon who believed in the value of education. Though Abraham de Moivre's parents were Protestant, he first attended Christian Brothers' Catholic school in Vitry, which was unusually tolerant given religious tensions in France at the time.
The refinement of Bernoulli's Golden Theorem, regarding the convergence of theoretical probability and empirical probability, was taken up by many notable latter day mathematicians like De Moivre, Laplace, Poisson, Chebyshev, Markov, Borel, Cantelli, Kolmogorov and Khinchin.
This approximation, known as de Moivre–Laplace theorem, is a huge time-saver when undertaking calculations by hand (exact calculations with large n are very onerous); historically, it was the first use of the normal distribution, introduced in Abraham de Moivre's book The Doctrine of Chances in 1738.
Œuvres complètes de Laplace, 14 vol. (1878–1912), Paris: Gauthier-Villars (copy from Gallica in French) Théorie du movement et de la figure elliptique des planètes (1784) Paris (not in Œuvres complètes) Précis de l'histoire de l'astronomie; Alphonse Rebière, Mathématiques et mathématiciens, 3rd edition Paris, Nony & Cie, 1898.
Theorem of de Moivre–Laplace (probability theory) Theorem of the cube (algebraic varieties) Theorem of the gnomon ; Theorem of three moments ; Theorem on friends and strangers (Ramsey theory) Thévenin's theorem (electrical circuits) Thompson transitivity theorem (finite groups) Thompson uniqueness theorem (finite groups)