When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .

  3. Multiple subset sum - Wikipedia

    en.wikipedia.org/wiki/Multiple_subset_sum

    The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem . The input to the problem is a multiset S {\displaystyle S} of n integers and a positive integer m representing the number of subsets.

  4. Talk:Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Talk:Subset_sum_problem

    The solution for subset sum also provides the solution for the original subset sum problem in the case where the numbers are small (again, for nonnegative numbers). If any sum of the numbers can be specified with at most P bits, then solving the problem approximately with c=2 -P is equivalent to solving it exactly.

  5. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    Maximum subarray problems arise in many fields, such as genomic sequence analysis and computer vision.. Genomic sequence analysis employs maximum subarray algorithms to identify important biological segments of protein sequences that have unusual properties, by assigning scores to points within the sequence that are positive when a motif to be recognized is present, and negative when it is not ...

  6. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems. [2]

  7. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    In the subset sum problem, the goal is to find a subset of S whose sum is a certain target number T given as input (the partition problem is the special case in which T is half the sum of S). In multiway number partitioning, there is an integer parameter k, and the goal is to decide whether S can be partitioned into k subsets of equal sum (the ...

  8. Multiway number partitioning - Wikipedia

    en.wikipedia.org/wiki/Multiway_number_partitioning

    [1]: sec.5 The problem is parametrized by a positive integer k, and called k-way number partitioning. [2] The input to the problem is a multiset S of numbers (usually integers), whose sum is k*T. The associated decision problem is to decide whether S can be partitioned into k subsets such that the sum of each subset is exactly T.

  9. Greedy number partitioning - Wikipedia

    en.wikipedia.org/wiki/Greedy_number_partitioning

    In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...