Search results
Results From The WOW.Com Content Network
The plasticity index is the size of the range of water contents where the soil exhibits plastic properties. The PI is the difference between the liquid and plastic limits (PI = LL-PL). Soils with a high PI tend to be clay, those with a lower PI tend to be silt, and those with a PI of 0 (non-plastic) tend to have little or no silt or clay.
The Drucker–Prager yield criterion [1] is a pressure-dependent model for determining whether a material has failed or undergone plastic yielding. The criterion was introduced to deal with the plastic deformation of soils. It and its many variants have been applied to rock, concrete, polymers, foams, and other pressure-dependent materials.
There are various factors that affect soil temperature, such as water content, [84] soil color, [85] and relief (slope, orientation, and elevation), [86] and soil cover (shading and insulation), in addition to air temperature. [87] The color of the ground cover and its insulating properties have a strong influence on soil temperature. [88]
The advantages of the Watts-Ford test are that it is convenient for testing thin sheets or strips, it is similar to a rolling process (in manufacturing analyses), frictional effects may be minimized, there is no 'barrelling' as would occur in a cylindrical compression test, and the plane strain deformation eases the analysis. Stress-strain curve
The Plasticity Index of a particular soil specimen is defined as the difference between the Liquid Limit and the Plastic Limit of the specimen; it is an indicator of how much water the soil particles in the specimen can absorb, and correlates with many engineering properties like permeability, compressibility, shear strength and others ...
If a soil is loaded beyond this point the soil is unable to sustain the increased load and the structure will break down. [4] This breakdown can cause a number of different things depending on the type of soil and its geologic history. Preconsolidation pressure cannot be measured directly, but can be estimated using a number of different ...
Rankine's theory (maximum-normal stress theory), developed in 1857 by William John Macquorn Rankine, [1] is a stress field solution that predicts active and passive earth pressure. It assumes that the soil is cohesionless, the wall is frictionless, the soil-wall interface is vertical, the failure surface on which the soil moves is planar, and ...
The first modern theoretical models for soil consolidation were proposed in the 1920s by Terzaghi and Fillunger, according to two substantially different approaches. [1] The former was based on diffusion equations in eulerian notation, whereas the latter considered the local Newton’s law for both liquid and solid phases, in which main variables, such as partial pressure, porosity, local ...