When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  3. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    Since this definition is coordinate-free, it shows that the divergence is the same in any coordinate system. However the above definition is not often used practically to calculate divergence; when the vector field is given in a coordinate system the coordinate definitions below are much simpler to use.

  4. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:

  5. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle ) is called the reference plane (sometimes fundamental plane ).

  6. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    In spherical coordinates in N dimensions, with the parametrization x = rθ ∈ R N with r representing a positive real radius and θ an element of the unit sphere S N−1, = + + where Δ S N−1 is the Laplace–Beltrami operator on the (N − 1)-sphere, known as the spherical Laplacian.

  7. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field of non-zero order k is written as ⁡ =, a contraction of a tensor field of order k − 1. Specifically, the divergence of a vector is a scalar.

  8. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    The magnitude of an object's solid angle in steradians is equal to the area of the segment of a unit sphere, centered at the apex, that the object covers.Giving the area of a segment of a unit sphere in steradians is analogous to giving the length of an arc of a unit circle in radians.

  9. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    The operator can also be written in polar coordinates. Let (t, ξ) be spherical coordinates on the sphere with respect to a particular point p of H n−1 (say, the center of the Poincaré disc). Here t represents the hyperbolic distance from p and ξ a parameter representing the choice of direction of the geodesic in S n−2. Then the ...