When.com Web Search

  1. Ad

    related to: example of carriers in photosynthesis and cellular respiration

Search results

  1. Results From The WOW.Com Content Network
  2. Hydrogen carrier - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_carrier

    The main role of these is to transport hydrogen atom to electron transport chain which will change ADP to ATP by adding one phosphate during metabolic processes (e.g. photosynthesis and respiration). Hydrogen carrier participates in an oxidation-reduction reaction [2] by getting reduced due to the

  3. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H +) across a membrane during cellular respiration or photosynthesis. An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red).

  4. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products. [1] Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]].

  5. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The cyclic light-dependent reactions occur only when the sole photosystem being used is photosystem I. Photosystem I excites electrons which then cycle from the transport protein, ferredoxin (Fd), to the cytochrome complex, b 6 f, to another transport protein, plastocyanin (Pc), and back to photosystem I. A proton gradient is created across the ...

  6. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    This is an electron transport chain (ETC). Electron transport chains often produce energy in the form of a transmembrane electrochemical potential gradient. The gradient can be used to transport molecules across membranes. Its energy can be used to produce ATP or to do useful work, for instance mechanical work of a rotating bacterial flagella.

  7. Anaerobic respiration - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_respiration

    Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.

  8. Thylakoid - Wikipedia

    en.wikipedia.org/wiki/Thylakoid

    The carriers in the electron transport chain use some of the electron's energy to actively transport protons from the stroma to the lumen. During photosynthesis, the lumen becomes acidic, as low as pH 4, compared to pH 8 in the stroma. [30] This represents a 10,000 fold concentration gradient for protons across the thylakoid membrane.

  9. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    For example, in E. coli, there are two different types of ubiquinol oxidase using oxygen as an electron acceptor. Under highly aerobic conditions, the cell uses an oxidase with a low affinity for oxygen that can transport two protons per electron.