Search results
Results From The WOW.Com Content Network
All that was necessary was to time the period of an ordinary (single pivot) pendulum at the first point, then transport the pendulum to the other point and time its period there. Since the pendulum's length was constant, from (1) the ratio of the gravitational accelerations was equal to the inverse of the ratio of the periods squared, and no ...
The real period is, of course, the time it takes the pendulum to go through one full cycle. Paul Appell pointed out a physical interpretation of the imaginary period: [ 16 ] if θ 0 is the maximum angle of one pendulum and 180° − θ 0 is the maximum angle of another, then the real period of each is the magnitude of the imaginary period of ...
The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum, and also to a slight degree on its weight distribution (the moment of inertia about its own center of mass) and the amplitude (width) of the pendulum's swing.
In physics and mathematics, in the area of dynamical systems, an elastic pendulum [1] [2] (also called spring pendulum [3] [4] or swinging spring) is a physical system where a piece of mass is connected to a spring so that the resulting motion contains elements of both a simple pendulum and a one-dimensional spring-mass system. [2]
In Kater's time, the period T of pendulums could be measured very precisely by timing them with precision clocks set by the passage of stars overhead. Prior to Kater's discovery, the accuracy of g measurements was limited by the difficulty of measuring the other factor L, the length of the pendulum, accurately.
A double pendulum consists of two pendulums attached end to end.. In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamic behavior with a strong sensitivity to initial conditions. [1]
Rayleigh–Lorentz pendulum (or Lorentz pendulum) is a simple pendulum, but subjected to a slowly varying frequency due to an external action (frequency is varied by varying the pendulum length), named after Lord Rayleigh and Hendrik Lorentz. [1] This problem formed the basis for the concept of adiabatic invariants in mechanics. On account of ...
As all pendulums are started together, their relative phases change continuously, but after time t, they come back in sync and the sequence repeats. [1] For small perturbations, the period of a pendulum is given by = where L is the length of the pendulum and g is the standard acceleration due to gravity.