Search results
Results From The WOW.Com Content Network
Equivalently, (hkℓ) denotes a plane that intercepts the three points a 1 /h, a 2 /k, and a 3 /ℓ, or some multiple thereof. That is, the Miller indices are proportional to the inverses of the intercepts of the plane, in the basis of the lattice vectors. If one of the indices is zero, it means that the planes do not intersect that axis (the ...
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.
A fundamental physical constant occurring in quantum mechanics is the Planck constant, h. A common abbreviation is ħ = h /2 π , also known as the reduced Planck constant or Dirac constant . Quantity (common name/s)
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
Planck tried to find a mathematical expression that could reproduce Wien's law (for short wavelengths) and the empirical formula (for long wavelengths). This expression included a constant, h {\displaystyle h} , which is thought to be for Hilfsgröße (auxiliary quantity), [ 8 ] and subsequently became known as the Planck constant.
The Dittus–Boelter equation (for turbulent flow) as introduced by W.H. McAdams [9] is an explicit function for calculating the Nusselt number. It is easy to solve but is less accurate when there is a large temperature difference across the fluid.
K is the horizontal saturated hydraulic conductivity (m/day) H is the depth of the water level in the hole relative to the water table in the soil (cm): H t = H at time t; H o = H at time t = 0; t is the time (in seconds) since the first measurement of H as H o; F is a factor depending on the geometry of the hole:
() = + is called the vertex form, where h and k are the x and y coordinates of the vertex, respectively. The coefficient a is the same value in all three forms. To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots r 1 and r 2.