Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Thus, the Fisher information may be seen as the curvature of the support curve (the graph of the log-likelihood). Near the maximum likelihood estimate, low Fisher information therefore indicates that the maximum appears "blunt", that is, the maximum is shallow and there are many nearby values with a similar log-likelihood. Conversely, high ...
In information theory, the principle of minimum Fisher information (MFI) is a variational principle which, when applied with the proper constraints needed to reproduce empirically known expectation values, determines the best probability distribution that characterizes the system. (See also Fisher information.)
The log-likelihood is also particularly useful for exponential families of distributions, which include many of the common parametric probability distributions. The probability distribution function (and thus likelihood function) for exponential families contain products of factors involving exponentiation. The logarithm of such a function is a ...
If p = 1/n and X is geometrically distributed with parameter p, then the distribution of X/n approaches an exponential distribution with expected value 1 as n → ∞, since (/ >) = (>) = = = [()] [] =. More generally, if p = λ/n, where λ is a parameter, then as n→ ∞ the distribution of X/n approaches an exponential distribution with rate ...
In information geometry, the Fisher information metric [1] is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability distributions. It can be used to calculate the distance between probability distributions. [2] The metric is interesting in several aspects.
In statistics, the observed information, or observed Fisher information, is the negative of the second derivative (the Hessian matrix) of the "log-likelihood" (the logarithm of the likelihood function). It is a sample-based version of the Fisher information.
The Gumbel distribution is a particular case of the generalized extreme value distribution (also known as the Fisher–Tippett distribution). It is also known as the log-Weibull distribution and the double exponential distribution (a term that is alternatively sometimes used to refer to the Laplace distribution).