Search results
Results From The WOW.Com Content Network
Linear density is the measure of a quantity of any characteristic value per unit of length. Linear mass density (titer in textile engineering, the amount of mass per unit length) and linear charge density (the amount of electric charge per unit length) are two common examples used in science and engineering.
Mass per unit area kg⋅m −2: L −2 M: intensive Capacitance: C: Stored charge per unit electric potential farad (F = C/V) L −2 M −1 T 4 I 2: scalar Catalytic activity concentration: Change in reaction rate due to presence of a catalyst per unit volume of the system kat⋅m −3: L −3 T −1 N: intensive Chemical potential: μ: Energy ...
From this the mass per unit length of the string / wire can be derived. This is called as the principle of the Melde's Experiment Finding the mass per unit length of a piece of string is also possible by using a simpler method – a ruler and some scales – and this will be used to check the results and offer a comparison.
A derived unit is used for expressing any other quantity, and is a product of powers of base units. For example, in the modern metric system, length has the unit metre and time has the unit second, and speed has the derived unit metre per second. [5]: 15 Density, or mass per unit volume, has the unit kilogram per cubic metre. [5]: 434
As there are many units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per cubic metre (kg/m 3 ) and the cgs unit of gram per cubic centimetre (g/cm 3 ) are probably the most commonly used units for density.
Length-specific quantity, the quotient of a physical quantity and length ("per unit length"), also called lineic quantities: [2] Linear charge density , charge per unit length Linear mass density , mass per unit length
For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value and unit, direction or orientation in space.
"The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J s, which is equal to kg m 2 s −1, where the metre and the second are defined in terms of c and ∆ν Cs." [1] The mass of one litre of water at the temperature ...