Search results
Results From The WOW.Com Content Network
At IUPAC standard temperature and pressure (0 °C and 100 kPa), dry air has a density of approximately 1.2754 kg/m 3. At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m 3. At 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft 3.
These figures should be compared with the temperature and density of Earth's atmosphere plotted at NRLMSISE-00, which shows the air density dropping from 1200 g/m 3 at sea level to 0.125 g/m 3 at 70 km, a factor of 9600, indicating an average scale height of 70 / ln(9600) = 7.64 km, consistent with the indicated average air temperature over ...
= molar mass of Earth's air: 0.0289644 kg/mol The value of subscript b ranges from 0 to 6 in accordance with each of seven successive layers of the atmosphere shown in the table below. The reference value for ρ b for b = 0 is the defined sea level value, ρ 0 = 1.2250 kg/m 3 or 0.0023768908 slug/ft 3 .
If the entire mass of the atmosphere had a uniform density equal to sea-level density (about 1.2 kg/m 3) from sea level upwards, it would terminate abruptly at an altitude of 8.50 km (27,900 ft). Air pressure actually decreases exponentially with altitude, for altitudes up to around 70 km (43 mi; 230,000 ft), dropping by half every 5.6 km ...
(The total air mass below a certain altitude is calculated by integrating over the density function.) For the ocean example there was a sharp transition in density at the top or "surface" of the ocean. However, for atmospheres made of gas there is no equivalent sharp transition or edge.
The basic assumptions made for the 1962 version were: [3] air is a clean, dry, perfect gas mixture (c p /c v = 1.40) molecular weight to 90 km of 28.9644 (C-12 scale); principal sea-level constituents are assumed to be (in mole percent):
at each geopotential altitude, where g is the standard acceleration of gravity, and R specific is the specific gas constant for dry air (287.0528J⋅kg −1 ⋅K −1). The solution is given by the barometric formula. Air density must be calculated in order to solve for the pressure, and is used in calculating dynamic pressure for moving vehicles.
K) specific gas constant for dry air ρa = P_a / (Rs_a * Tair) return ρa end # Wet air density ρ [kg/m3] # Tair air temperature in [Kelvin] # P absolute atmospheric pressure [Pa] function wet_air_density (RH, Tair, P) es = water_vapor_saturated_pressure (Tair, P) e = es * RH / 100 ρv = water_vapor_density (e, Tair) ρa = dry_air_density (P-e ...