Search results
Results From The WOW.Com Content Network
The human skin is the outer covering of the body and is the largest organ of the integumentary system. The skin has up to seven layers of ectodermal tissue guarding muscles, bones, ligaments and internal organs. Human skin is similar to most of the other mammals' skin, and it is very similar to pig skin.
The epidermis is the outermost of the three layers that comprise the skin, the inner layers being the dermis and hypodermis. [1] The epidermal layer provides a barrier to infection from environmental pathogens [2] and regulates the amount of water released from the body into the atmosphere through transepidermal water loss.
The transcription factor p63, which prevents epidermal stem cells from differentiating into keratinocytes. [23] Mutations in the p63 DNA-binding domain are associated with ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome. The transcriptome of p63 mutant keratinocytes deviated from the normal epidermal cell identity. [24]
This complex surrounds cells in the stratum corneum and contributes to the skin's barrier function. Corneodesmosomes (modified desmosomes) facilitate cellular adhesion by linking adjacent cells within this epidermal layer. These complexes are degraded by proteases, eventually permitting cells to be shed at the surface. Desquamation and ...
Epidermis and dermis of human skin. The epidermis is the strong, superficial layer that serves as the first line of protection against the outer environment. The human epidermis is composed of stratified squamous epithelial cells, which further break down into four to five layers: the stratum corneum, stratum granulosum, stratum spinosum and ...
Some skin secretions are associated with body hair. Skin secretions originate from glands that in dermal layer of the epidermis. Sweat, a physiological aid to body temperature regulation, is secreted by eccrine glands. Sebaceous glands secrete the skin lubricant sebum. Sebum is secreted onto the hair shaft and it prevents the hair from splitting.
The ability of the skin to heal even after considerable damage has occurred is due to the presence of stem cells in the dermis and cells in the stratum basale of the epidermis, all of which can generate new tissue. When an injury extends through the epidermis into the dermis, bleeding occurs and the inflammatory response begins.
The majority bacteria tested increased the number of skin T cells. Interactions between T cells and specific microbiota components may represent evolutionary outcome by which the skin immune system and the microbiota provide heterologous protection against invasive pathogens and calibrate barrier immunity through the use of chemical signals.