Search results
Results From The WOW.Com Content Network
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
(That is, the two dice are independent.) If, however, the 1st die's result is a 3, and someone tells you about a third event - that the sum of the two results is even - then this extra unit of information restricts the options for the 2nd result to an odd number. In other words, two events can be independent, but NOT conditionally independent. [2]
Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3]Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.
While the number of independent random events grows, the related joint probability value decreases rapidly to zero, according to a negative exponential law. Similarly, two absolutely continuous random variables are independent if and only if , (,) = ()
Independent: Each outcome will not affect the other outcome (for from 1 to 10), which means the variables , …, are independent of each other. Identically distributed : Regardless of whether the coin is fair (with a probability of 1/2 for heads) or biased, as long as the same coin is used for each flip, the probability of getting heads remains ...
In probability theory, conditional dependence is a relationship between two or more events that are dependent when a third event occurs. [1] [2] For example, if and are two events that individually increase the probability of a third event , and do not directly affect each other, then initially (when it has not been observed whether or not the ...
Given the event p = 2/3, the conditional distribution of the sequence is that the X i are independent and identically distributed and X 1 = 1 with probability 2/3 and X 1 = 0 with probability 1 − 2/3. Given the event p = 9/10, the conditional distribution of the sequence is that the X i are independent and identically distributed and X 1 = 1 ...
A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive ...