Search results
Results From The WOW.Com Content Network
In astronomy, the altitude in the horizontal coordinate system and the zenith angle are complementary angles, with the horizon perpendicular to the zenith. The astronomical meridian is also determined by the zenith, and is defined as a circle on the celestial sphere that passes through the zenith, nadir, and the celestial poles.
The solar zenith angle is the zenith angle of the sun, i.e., the angle between the sun’s rays and the vertical direction. It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the sun’s rays and a horizontal plane.
The geometric center of the Earth, i.e. the arithmetic mean position of all points within the oblate spheroid that is the precise shape of the Earth. geocentric With reference to, or pertaining to, the geometric center of the Earth; [14] centered upon the Earth, e.g. a geocentric orbit. geocentric zenith
In astronomy, the meridian is the great circle passing through the celestial poles, as well as the zenith and nadir of an observer's location. Consequently, it contains also the north and south points on the horizon, and it is perpendicular to the celestial equator and horizon.
The geocentric ecliptic system was the principal coordinate system for ancient astronomy and is still useful for computing the apparent motions of the Sun, Moon, and planets. [3] It was used to define the twelve astrological signs of the zodiac, for instance.
For azimuth (bearing from the north), the top of the dial indicates South, and the two VI points of the dial East and West. For altitude, the top is the zenith and the two VI and VI points define the horizon. (This is for the astronomical clocks designed for use in the northern hemisphere.)
The solar azimuth angle is the azimuth (horizontal angle with respect to north) of the Sun's position. [1] [2] [3] This horizontal coordinate defines the Sun's relative direction along the local horizon, whereas the solar zenith angle (or its complementary angle solar elevation) defines the Sun's apparent altitude.
In spherical astronomy, the parallactic angle is the angle between the great circle through a celestial object and the zenith, and the hour circle of the object. [1] It is usually denoted q. In the triangle zenith—object—celestial pole, the parallactic angle will be the position angle of the zenith at the celestial