When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    In fact, the Lagrange inversion theorem has a number of additional rather different proofs, including ones using tree-counting arguments or induction. [7] [8] [9] If f is a formal power series, then the above formula does not give the coefficients of the compositional inverse series g directly in terms for the coefficients of the series f.

  3. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    For example, renormalization in QED modifies the mass of the free field electron to match that of a physical electron (with an electromagnetic field), and will in doing so add a term to the free field Lagrangian which must be cancelled by a counterterm in the interaction Lagrangian, that then shows up as a two-line vertex in the Feynman diagrams.

  4. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Particularly, Lagrange's approach was to set up independent generalized coordinates for the position and speed of every object, which allows the writing down of a general form of Lagrangian (total kinetic energy minus potential energy of the system) and summing this over all possible paths of motion of the particles yielded a formula for the ...

  5. Residue (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Residue_(complex_analysis)

    The next example shows that, computing a residue by series expansion, a major role is played by the Lagrange inversion theorem. Let u ( z ) := ∑ k ≥ 1 u k z k {\displaystyle u(z):=\sum _{k\geq 1}u_{k}z^{k}} be an entire function , and let v ( z ) := ∑ k ≥ 1 v k z k {\displaystyle v(z):=\sum _{k\geq 1}v_{k}z^{k}} with positive radius of ...

  6. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    In physics problems it may be the case that =, meaning the integrand is a function of () and ′ but does not appear separately. In that case, the Euler–Lagrange equation can be simplified to the Beltrami identity [ 16 ] L − f ′ ∂ L ∂ f ′ = C , {\displaystyle L-f'{\frac {\partial L}{\partial f'}}=C\,,} where C {\displaystyle C} is a ...

  7. Inverse problem for Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Inverse_problem_for...

    In mathematics, the inverse problem for Lagrangian mechanics is the problem of determining whether a given system of ordinary differential equations can arise as the Euler–Lagrange equations for some Lagrangian function. There has been a great deal of activity in the study of this problem since the early 20th century.

  8. Lagrangian (field theory) - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_(field_theory)

    In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold.The dependent variables are replaced by the value of a field at that point in spacetime (,,,) so that the equations of motion are obtained by means of an action principle, written as: =, where the action, , is a functional of the dependent ...

  9. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon ; the problem may be eliminated by choosing interpolation points at Chebyshev nodes .