When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rational normal curve - Wikipedia

    en.wikipedia.org/wiki/Rational_normal_curve

    In mathematics, the rational normal curve is a smooth, rational curve C of degree n in projective n-space P n. It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For n = 2 it is the plane conic Z 0 Z 2 = Z 2 1, and for n = 3 it is the twisted cubic.

  3. List of curves - Wikipedia

    en.wikipedia.org/wiki/List_of_curves

    This is a list of Wikipedia articles about curves used in different fields: ... Rational curves are subdivided according to the degree of the polynomial. Degree 1

  4. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...

  5. Quintic threefold - Wikipedia

    en.wikipedia.org/wiki/Quintic_threefold

    Since the generic quintic threefold is a Calabi–Yau threefold and the moduli space of rational curves of a given degree is a discrete, finite set (hence compact), these have well-defined Donaldson–Thomas invariants (the "virtual number of points"); at least for degree 1 and 2, these agree with the actual number of points.

  6. Rank of an elliptic curve - Wikipedia

    en.wikipedia.org/wiki/Rank_of_an_elliptic_curve

    In mathematics, the rank of an elliptic curve is the rational Mordell–Weil rank of an elliptic curve defined over the field of rational numbers or more generally a number field K. Mordell's theorem (generalized to arbitrary number fields by André Weil ) says the group of rational points on an elliptic curve has a finite basis .

  7. Faltings's theorem - Wikipedia

    en.wikipedia.org/wiki/Faltings's_theorem

    Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, [1] and known as the Mordell conjecture until its 1983 proof by Gerd Faltings. [2]

  8. Minimal model program - Wikipedia

    en.wikipedia.org/wiki/Minimal_model_program

    Castelnuovo's theorem implies that to construct a minimal model for a smooth surface, we simply contract all the −1-curves on the surface, and the resulting variety Y is either a (unique) minimal model with K nef, or a ruled surface (which is the same as a 2-dimensional Fano fiber space, and is either a projective plane or a ruled surface ...

  9. Lüroth's theorem - Wikipedia

    en.wikipedia.org/wiki/Lüroth's_theorem

    The proof of Lüroth's theorem can be derived easily from the theory of rational curves, using the geometric genus. [2] This method is non-elementary, but several short proofs using only the basics of field theory have long been known, mainly using the concept of transcendence degree. [3]