When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rational normal curve - Wikipedia

    en.wikipedia.org/wiki/Rational_normal_curve

    In mathematics, the rational normal curve is a smooth, rational curve C of degree n in projective n-space P n. It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For n = 2 it is the plane conic Z 0 Z 2 = Z 2 1, and for n = 3 it is the twisted cubic.

  3. List of curves - Wikipedia

    en.wikipedia.org/wiki/List_of_curves

    This is a list of Wikipedia articles about curves used in different fields: ... Rational curves are subdivided according to the degree of the polynomial. Degree 1

  4. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...

  5. Minimal model program - Wikipedia

    en.wikipedia.org/wiki/Minimal_model_program

    Every irreducible complex algebraic curve is birational to a unique smooth projective curve, so the theory for curves is trivial. The case of surfaces was first investigated by the geometers of the Italian school around 1900; the contraction theorem of Guido Castelnuovo essentially describes the process of constructing a minimal model of any smooth projective surface.

  6. Rank of an elliptic curve - Wikipedia

    en.wikipedia.org/wiki/Rank_of_an_elliptic_curve

    In mathematics, the rank of an elliptic curve is the rational Mordell–Weil rank of an elliptic curve defined over the field of rational numbers or more generally a number field K. Mordell's theorem (generalized to arbitrary number fields by André Weil ) says the group of rational points on an elliptic curve has a finite basis .

  7. Faltings's theorem - Wikipedia

    en.wikipedia.org/wiki/Faltings's_theorem

    Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell , [ 1 ] and known as the Mordell conjecture until its 1983 proof by Gerd Faltings . [ 2 ]

  8. Lüroth's theorem - Wikipedia

    en.wikipedia.org/wiki/Lüroth's_theorem

    The proof of Lüroth's theorem can be derived easily from the theory of rational curves, using the geometric genus. [2] This method is non-elementary, but several short proofs using only the basics of field theory have long been known, mainly using the concept of transcendence degree. [3]

  9. du Val singularity - Wikipedia

    en.wikipedia.org/wiki/Du_Val_singularity

    In algebraic geometry, a Du Val singularity, also called simple surface singularity, Kleinian singularity, or rational double point, is an isolated singularity of a complex surface which is modeled on a double branched cover of the plane, with minimal resolution obtained by replacing the singular point with a tree of smooth rational curves, with intersection pattern dual to a Dynkin diagram of ...