Search results
Results From The WOW.Com Content Network
Figure 1: (a) This simple supported beam is shown with a unit load placed a distance x from the left end. Its influence lines for four different functions: (b) the reaction at the left support (denoted A), (c) the reaction at the right support (denoted C), (d) one for shear at a point B along the beam, and (e) one for moment also at point B. Figure 2: The change in Bending Moment in a ...
Part (a) of the figure to the right shows a simply supported beam with a unit load traveling across it. The structure is statically determinate. Therefore, all influence lines will be straight lines. Parts (b) and (c) of the figure shows the influence lines for the reactions in the y-direction.
Hermann Minkowski (1864–1909) found that the theory of special relativity could be best understood as a four-dimensional space, since known as the Minkowski spacetime.. In physics, Minkowski space (or Minkowski spacetime) (/ m ɪ ŋ ˈ k ɔː f s k i,-ˈ k ɒ f-/ [1]) is the main mathematical description of spacetime in the absence of gravitation.
The dashed line is the spacetime trajectory ("world line") of the particle. The balls are placed at regular intervals of proper time along the world line. The solid diagonal lines are the light cones for the observer's current event, and they intersect at that event. The small dots are other arbitrary events in the spacetime.
Free body diagram of a statically indeterminate beam In the beam construction on the right, the four unknown reactions are V A , V B , V C , and H A . The equilibrium equations are: [ 2 ]
This equation is completely coordinate- and metric-independent and says that the electromagnetic flux through a closed two-dimensional surface in space–time is topological, more precisely, depends only on its homology class (a generalization of the integral form of Gauss law and Maxwell–Faraday equation, as the homology class in Minkowski ...
For some geodesics in such instances, it is possible for a curve that connects the two events and is nearby to the geodesic to have either a longer or a shorter proper time than the geodesic. [11] For a space-like geodesic through two events, there are always nearby curves which go through the two events that have either a longer or a shorter ...
Mathematically, the frame fields {} define an isomorphism at each point where they are defined from the tangent space to ,. Then abstract indices label the tangent space, while greek indices label ,. If the frame fields are position dependent then greek indices do not necessarily transform tensorially under a change of coordinates.