Search results
Results From The WOW.Com Content Network
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
BLAKE is a cryptographic hash function based on Daniel J. Bernstein's ChaCha stream cipher, but a permuted copy of the input block, XORed with round constants, is added before each ChaCha round. Like SHA-2 , there are two variants differing in the word size.
A mid-squares hash code is produced by squaring the input and extracting an appropriate number of middle digits or bits. For example, if the input is 123 456 789 and the hash table size 10 000, then squaring the key produces 15 241 578 750 190 521, so the hash code is taken as the middle 4 digits of the 17-digit number (ignoring the high digit ...
The first chain assumes the hash value is in the last hash position and just applies R k; the next chain assumes the hash value is in the second-to-last hash position and applies R k−1, then H, then R k; and so on until the last chain, which applies all the reduction functions, alternating with H. This creates a new way of producing a false ...
Snefru is a cryptographic hash function invented by Ralph Merkle in 1990 while working at Xerox PARC. [1] The function supports 128-bit and 256-bit output. It was named after the Egyptian Pharaoh Sneferu, continuing the tradition of the Khufu and Khafre block ciphers.
The existence of this parameter provides a trade-off between size and speed. Large values of the Winternitz parameter yield short signatures and keys, at the price of slower signing and verifying. In practice, a typical value for this parameter is 16. In the case of stateless hash-based signatures, few-time signature schemes are used.
Comparison of supported cryptographic hash functions. Here hash functions are defined as taking an arbitrary length message and producing a fixed size output that is virtually impossible to use for recreating the original message.
The Whirlpool hash function is a Merkle–Damgård construction based on an AES-like block cipher W in Miyaguchi–Preneel mode. [2] The block cipher W consists of an 8×8 state matrix of bytes, for a total of 512 bits. The encryption process consists of updating the state with four round functions over 10 rounds.