Search results
Results From The WOW.Com Content Network
Calculus. In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. [1][2][3] Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is. {\displaystyle h' (x)= {\frac {f' (x)g (x)-f (x)g' (x)} { (g (x))^ {2}}}.} It is ...
Reciprocal rule. In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f. The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents. Also, one can readily deduce the quotient rule from the ...
In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule), but the method can be generalized to division by any polynomial.
17 is divided into 3 groups of 5, with 2 as leftover. Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2. In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the ...
Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the dividend, which is divided by the divisor, and the result is called the quotient. At an elementary level the division of two natural numbers is, among other possible interpretations ...
Chunking (division) In mathematics education at the primary school level, chunking (sometimes also called the partial quotients method) is an elementary approach for solving simple division questions by repeated subtraction. It is also known as the hangman method with the addition of a line separating the divisor, dividend, and partial ...
Calculus. In calculus, the product rule (or Leibniz rule[1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as or in Leibniz's notation as.
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :