Search results
Results From The WOW.Com Content Network
Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields. As the ...
In magnetism, the Curie–Weiss law describes the magnetic susceptibility χ of a ferromagnet in the paramagnetic region above the Curie temperature: = where C is a material-specific Curie constant, T is the absolute temperature, and T C is the Curie temperature, both measured in kelvin.
The Curie–Weiss law is a simple model derived from a mean-field approximation, this means it works well for the materials temperature, T, much greater than their corresponding Curie temperature, T C, i.e. T ≫ T C; it however fails to describe the magnetic susceptibility, χ, in the immediate vicinity of the Curie point because of ...
This page was last edited on 13 April 2023, at 08:11 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
Hence the magnetization of an anisotropic magnet is harder to destroy at low temperature and the temperature dependence of the magnetization deviates accordingly from the Bloch T 3/2 law. All real magnets are anisotropic to some extent. Near the Curie temperature, (),
The material constant in Curie's law is known as the Curie constant. He also discovered that ferromagnetic substances exhibited a critical temperature transition, above which the substances lost their ferromagnetic behavior. This is now known as the Curie temperature. The Curie temperature is used to study plate tectonics, treat hypothermia ...
Curie's law is valid under the commonly encountered conditions of low magnetization (μ B H ≲ k B T), but does not apply in the high-field/low-temperature regime where saturation of magnetization occurs (μ B H ≳ k B T) and magnetic dipoles are all aligned with the applied field. When the dipoles are aligned, increasing the external field ...
Curie's law: Physics: Pierre Curie: Curie–Weiss law: Physics: Pierre Curie and Pierre-Ernest Weiss: D'Alembert's paradox D'Alembert's principle: Fluid dynamics, Physics: Jean le Rond d'Alembert: Dalton's law of partial pressure: Thermodynamics: John Dalton: Darcy's law: Fluid mechanics: Henry Darcy: De Bruijn–Erdős theorem: Mathematics ...