Search results
Results From The WOW.Com Content Network
Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the domain. So a method of finding a global maximum (or minimum) is to look at all the local maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on the ...
In computer science, a min-max heap is a complete binary tree data structure which combines the usefulness of both a min-heap and a max-heap, that is, it provides constant time retrieval and logarithmic time removal of both the minimum and maximum elements in it. [2]
When data is already organized into a data structure, it may be possible to perform selection in an amount of time that is sublinear in the number of values. As a simple case of this, for data already sorted into an array, selecting the k {\displaystyle k} th element may be performed by a single array lookup, in constant time. [ 27 ]
extract-max (or extract-min): returns the node of maximum value from a max heap [or minimum value from a min heap] after removing it from the heap (a.k.a., pop [5]) delete-max (or delete-min): removing the root node of a max heap (or min heap), respectively; replace: pop root and push a new key. This is more efficient than a pop followed by a ...
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]
Saturation arithmetic is a version of arithmetic in which all operations, such as addition and multiplication, are limited to a fixed range between a minimum and maximum value. If the result of an operation is greater than the maximum, it is set ("clamped") to the maximum; if it is below the minimum, it is clamped to the minimum. The name comes ...
Maps store a collection of (key, value) pairs, such that each possible key appears at most once in the collection. They generally support three operations: [3] Insert: add a new (key, value) pair to the collection, mapping the key to its new value. Any existing mapping is overwritten. The arguments to this operation are the key and the value.
Selection sort can be implemented as a stable sort if, rather than swapping in step 2, the minimum value is inserted into the first position and the intervening values shifted up. However, this modification either requires a data structure that supports efficient insertions or deletions, such as a linked list, or it leads to performing Θ ( n 2 ...