When.com Web Search

  1. Ads

    related to: gauss curvature of sphere worksheet with solutions free printable paper

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    For example, a sphere of radius r has Gaussian curvature ⁠ 1 / r 2 ⁠ everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus.

  3. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    A sphere of radius R has constant Gaussian curvature which is equal to 1/R 2. At the same time, a plane has zero Gaussian curvature. As a corollary of Theorema Egregium, a piece of paper cannot be bent onto a sphere without crumpling. Conversely, the surface of a sphere cannot be unfolded onto a flat plane without distorting the distances.

  4. Pseudosphere - Wikipedia

    en.wikipedia.org/wiki/Pseudosphere

    A pseudosphere of radius R is a surface in having curvature −1/R 2 at each point. Its name comes from the analogy with the sphere of radius R, which is a surface of curvature 1/R 2. The term was introduced by Eugenio Beltrami in his 1868 paper on models of hyperbolic geometry. [1]

  5. Focal surface - Wikipedia

    en.wikipedia.org/wiki/Focal_surface

    At the center point of the monkey saddle the Gauss curvature is 0, otherwise negative. For a surface in three dimension the focal surface, surface of centers or evolute is formed by taking the centers of the curvature spheres, which are the tangential spheres whose radii are the reciprocals of one of the principal curvatures at the

  6. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The mean curvature is an extrinsic invariant. In intrinsic geometry, a cylinder is developable, meaning that every piece of it is intrinsically indistinguishable from a piece of a plane since its Gauss curvature vanishes identically. Its mean curvature is not zero, though; hence extrinsically it is different from a plane.

  7. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  8. Gaussian surface - Wikipedia

    en.wikipedia.org/wiki/Gaussian_surface

    It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field (Gauss's law, Gauss's law for magnetism, or Gauss's law for gravity) by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of ...

  9. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    The usual curvature of the planar curve is the geodesic curvature of the curve traced on the sphere. This identification of the tangent planes along the curve corresponds to parallel transport. This is particularly easy to visualize for a sphere: it is exactly the way a marble can be rolled along a perfectly flat table top.

  1. Related searches gauss curvature of sphere worksheet with solutions free printable paper

    gaussian curvaturegaussian curve formula
    gaussian curvature formulagaussian curve of zero
    gaussian curvegaussian curve negative