When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    The simplest kind of an orbit is a fixed point, or an equilibrium. If a mechanical system is in a stable equilibrium state then a small push will result in a localized motion, for example, small oscillations as in the case of a pendulum. In a system with damping, a stable equilibrium state is moreover asymptotically stable. On the other hand ...

  3. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    This means that the rank at the critical point is lower than the rank at some neighbour point. In other words, let k be the maximal dimension of the open balls contained in the image of f; then a point is critical if all minors of rank k of f are zero. In the case where m = n = k, a point is critical if the Jacobian determinant is zero.

  4. Equilibrium point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_point...

    Stability generally increases to the left of the diagram. [1] Some sink, source or node are equilibrium points. In mathematics, specifically in differential equations, an equilibrium point is a constant solution to a differential equation.

  5. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov . In simple terms, if the solutions that start out near an equilibrium point x e {\displaystyle x_{e}} stay near x e {\displaystyle x_{e}} forever, then x e {\displaystyle x_{e}} is ...

  6. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).

  7. Linear stability - Wikipedia

    en.wikipedia.org/wiki/Linear_stability

    In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form / =, where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part.

  8. Saddle-node bifurcation - Wikipedia

    en.wikipedia.org/wiki/Saddle-node_bifurcation

    At = (the bifurcation point) there is exactly one equilibrium point. At this point the fixed point is no longer hyperbolic. In this case the fixed point is called a saddle-node fixed point. If > there are no equilibrium points. [2] Saddle node bifurcation. In fact, this is a normal form of a saddle-node bifurcation.

  9. Maxwell construction - Wikipedia

    en.wikipedia.org/wiki/Maxwell_construction

    The discontinuity in , and other properties, e.g. internal energy, , and entropy,, of the substance, is called a first order phase transition. [12] [13] In order to specify the unique experimentally observed pressure, (), at which it occurs another thermodynamic condition is required, for from Fig.1 it could clearly occur for any pressure in the range .