Search results
Results From The WOW.Com Content Network
Rule 30 is an elementary cellular automaton introduced by Stephen Wolfram in 1983. [2] Using Wolfram's classification scheme , Rule 30 is a Class III rule, displaying aperiodic, chaotic behaviour. This rule is of particular interest because it produces complex, seemingly random patterns from simple, well-defined rules.
In the study of ordinary differential equations and their associated boundary value problems in mathematics, Lagrange's identity, named after Joseph Louis Lagrange, gives the boundary terms arising from integration by parts of a self-adjoint linear differential operator.
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
For other pawns, the position shown is the key position. White to move draws; Black to move loses (rule 2, parts b and c above). It is always an advantage to have the opposition. If the attacking king is on the sixth rank in front of the pawn it always wins (rule 2, parts a and c). It is always an advantage to have the king in front of its pawn.
Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by adding + points to an -point rule in such a way that the resulting rule is exact for polynomials of degree less than or equal to + (Laurie (1997, p. 1133); the corresponding Gauss rule is of order ).
April 12, 1973: A U.S. Navy Lockheed P-3C (157332) operating from NAS Moffett Field in Sunnyvale, California collided with a NASA Convair 990 (N711NA) during approach to runway 32R. The aircraft crashed on the Sunnyvale Municipal Golf Course, half a mile short of the runway, resulting in the destruction of both aircraft and the deaths of all ...
Consider a capacitor of capacitance C, holding a charge +q on one plate and −q on the other. Moving a small element of charge d q from one plate to the other against the potential difference V = q / C requires the work d W : d W = q C d q , {\displaystyle \mathrm {d} W={\frac {q}{C}}\,\mathrm {d} q,} where W is the work measured in joules, q ...
The Kopp–Neumann law, named for Kopp and Franz Ernst Neumann, is a common approach for determining the specific heat C (in J·kg −1 ·K −1) of compounds using the following equation: [3] = =, where N is the total number of compound constituents, and C i and f i denote the specific heat and mass fraction of the i-th constituent. This law ...