When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not need to be counted as part of the transmitted information).

  3. Adaptive Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Adaptive_Huffman_coding

    It is an online coding technique based on Huffman coding. Having no initial knowledge of occurrence frequencies, it permits dynamically adjusting the Huffman's tree as data are being transmitted. In a FGK Huffman tree, a special external node, called 0-node, is used to identify a newly coming character. That is, whenever new data is encountered ...

  4. Deflate - Wikipedia

    en.wikipedia.org/wiki/DEFLATE

    Instructions to generate the necessary Huffman tree immediately follow the block header. The static Huffman option is used for short messages, where the fixed saving gained by omitting the tree outweighs the percentage compression loss due to using a non-optimal (thus, not technically Huffman) code. Compression is achieved through two steps:

  5. Canonical Huffman code - Wikipedia

    en.wikipedia.org/wiki/Canonical_Huffman_code

    The advantage of a canonical Huffman tree is that it can be encoded in fewer bits than an arbitrary tree. Let us take our original Huffman codebook: A = 11 B = 0 C = 101 D = 100 There are several ways we could encode this Huffman tree. For example, we could write each symbol followed by the number of bits and code:

  6. Package-merge algorithm - Wikipedia

    en.wikipedia.org/wiki/Package-merge_algorithm

    The package-merge algorithm is an O(nL)-time algorithm for finding an optimal length-limited Huffman code for a given distribution on a given alphabet of size n, where no code word is longer than L. It is a greedy algorithm , and a generalization of Huffman's original algorithm .

  7. Entropy coding - Wikipedia

    en.wikipedia.org/wiki/Entropy_coding

    More precisely, the source coding theorem states that for any source distribution, the expected code length satisfies ⁡ [(())] ⁡ [⁡ (())], where is the number of symbols in a code word, is the coding function, is the number of symbols used to make output codes and is the probability of the source symbol. An entropy coding attempts to ...

  8. Shannon–Fano coding - Wikipedia

    en.wikipedia.org/wiki/Shannon–Fano_coding

    Unfortunately, Shannon–Fano coding does not always produce optimal prefix codes; the set of probabilities {0.35, 0.17, 0.17, 0.16, 0.15} is an example of one that will be assigned non-optimal codes by Shannon–Fano coding. Fano's version of Shannon–Fano coding is used in the IMPLODE compression method, which is part of the ZIP file format ...

  9. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    A well known example is a Huffman coding of a corpus. Like other self-balancing trees, WBTs store bookkeeping information pertaining to balance in their nodes and perform rotations to restore balance when it is disturbed by insertion or deletion operations. Specifically, each node stores the size of the subtree rooted at the node, and the sizes ...