When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Numerical methods for linear least squares - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    It can therefore be important that considerations of computation efficiency for such problems extend to all of the auxiliary quantities required for such analyses, and are not restricted to the formal solution of the linear least squares problem. Matrix calculations, like any other, are affected by rounding errors. An early summary of these ...

  3. Dantzig–Wolfe decomposition - Wikipedia

    en.wikipedia.org/wiki/Dantzig–Wolfe_decomposition

    For most linear programs solved via the revised simplex algorithm, at each step, most columns (variables) are not in the basis. In such a scheme, a master problem containing at least the currently active columns (the basis) uses a subproblem or subproblems to generate columns for entry into the basis such that their inclusion improves the ...

  4. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as

  5. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    The minimum of f is 0 at z if and only if z solves the linear complementarity problem. If M is positive definite, any algorithm for solving (strictly) convex QPs can solve the LCP. Specially designed basis-exchange pivoting algorithms, such as Lemke's algorithm and a variant of the simplex algorithm of Dantzig have been used for decades ...

  6. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

  7. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    To solve the underdetermined (<) linear problem = where the matrix has dimensions and rank , first find the QR factorization of the transpose of : =, where Q is an orthogonal matrix (i.e. =), and R has a special form: = [].

  8. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.

  9. Cyclic reduction - Wikipedia

    en.wikipedia.org/wiki/Cyclic_reduction

    Cyclic reduction is a numerical method for solving large linear systems by repeatedly splitting the problem. Each step eliminates even or odd rows and columns of a matrix and remains in a similar form. The elimination step is relatively expensive but splitting the problem allows parallel computation.