Ad
related to: open circuit saturation formula calculator for gas and water flow index
Search results
Results From The WOW.Com Content Network
The open-circuit saturation curve (also open-circuit characteristic, OCC) of a synchronous generator is a plot of the output open circuit voltage as a function of the excitation current or field. The curve is typically plotted alongside the synchronous impedance curve .
Figure 1: Amott–Harvey index and USBM number calculation. These two indices are obtained from special core analysis (SCAL) experiments (porous plate or centrifuge) by plotting the capillary pressure curve as a function of the water saturation as shown on figure 1:
[1] [2] [12] [13] A maximum oxygen partial pressure of 1.4 bar for the active sectors of the dive, and 1.6 bar for decompression stops is recommended by several recreational and technical diving certification agencies for open circuit, [14] and 1.2 bar or 1.3 bar as maximum for the active sectors of a dive on closed-circuit rebreather ...
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
The formula simply divides the absolute partial pressure of oxygen which can be tolerated (expressed in atm or bar) by the fraction of oxygen in the breathing gas, to calculate the absolute pressure at which the mix can be breathed. (for example, 50% nitrox can be breathed at twice the pressure of 100% oxygen, so divide by 0.5, etc.).
Note the location of critical flow, subcritical flow, and supercritical flow. The energy equation used for open channel flow computations is a simplification of the Bernoulli Equation (See Bernoulli Principle), which takes into account pressure head, elevation head, and velocity head. (Note, energy and head are synonymous in Fluid Dynamics.
The oxygen content of a stored gas mixture can be analysed by passing a small flow of the gas over a recently calibrated cell for long enough that the output stabilises. The stable output represents the fraction of oxygen in the mixture. Care must be taken to ensure that the gas flow is not diluted by ambient air, as this would affect the reading.
Synchronous impedance curve (short-circuit characteristic curve), showing armature current as function of field current. The curve is obtained by rotating the generator at the rated RPM with the output terminals shorted and the output current going to 100% of the rated for the device (higher values are typically not tested to avoid overheating).