When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by Maxwell is no longer included. The vector calculus formalism below, the work of Oliver Heaviside, [6] [7] has become standard.

  3. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    If electromagnetic energy is not gained from or lost to other forms of energy within some region (e.g., mechanical energy, or heat), then electromagnetic energy is locally conserved within that region, yielding a continuity equation as a special case of Poynting's theorem: = where is the energy density of the electromagnetic field. This ...

  4. Poynting's theorem - Wikipedia

    en.wikipedia.org/wiki/Poynting's_theorem

    where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  6. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    Generically, these equations state that the divergence of the flow of the conserved quantity is equal to the distribution of sources or sinks of that quantity. The divergence theorem states that any such continuity equation can be written in a differential form (in terms of a divergence) and an integral form (in terms of a flux). [12]

  7. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .

  8. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.

  9. Magnetostatics - Wikipedia

    en.wikipedia.org/wiki/Magnetostatics

    Where ∇ with the dot denotes divergence, and B is the magnetic flux density, the first integral is over a surface with oriented surface element . Where ∇ with the cross denotes curl , J is the current density and H is the magnetic field intensity , the second integral is a line integral around a closed loop C {\displaystyle C} with line ...