Search results
Results From The WOW.Com Content Network
p–n junctions represent the simplest case of a semiconductor electronic device; a p-n junction by itself, when connected on both sides to a circuit, is a diode. More complex circuit components can be created by further combinations of p-type and n-type semiconductors; for example, the bipolar junction transistor (BJT) is a semiconductor in ...
Junction temperature, short for transistor junction temperature, [1] is the highest operating temperature of the actual semiconductor in an electronic device. In operation, it is higher than case temperature and the temperature of the part's exterior.
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]
In a p-n junction diode, electrons and holes are the minority charge carriers in the p-region and the n-region, respectively. In an unbiased junction, due to the diffusion of charge carriers, the diffusion current, which flows from the p to n region, is exactly balanced by the equal and opposite drift current. [1]
A p–n diode is a type of semiconductor diode based upon the p–n junction. The diode conducts current in only one direction, and it is made by joining a p-type semiconducting layer to an n-type semiconducting layer. Semiconductor diodes have multiple uses including rectification of alternating current to direct current, in the detection of ...
The ideality factor (also called the emissivity factor) is a fitting parameter that describes how closely the diode's behavior matches that predicted by theory, which assumes the p–n junction of the diode is an infinite plane and no recombination occurs within the space-charge region. A perfect match to theory is indicated when n = 1.
A well known application of this method is the approximation of the transfer function of a pn junction diode. The transfer function of an ideal diode has been given at the top of this (non-linear) section. However, this formula is rarely used in network analysis, a piecewise approximation being used instead.
Increase in reverse bias does not allow the majority charge carriers to diffuse across the junction. However, this potential helps some minority charge carriers in crossing the junction. Since the minority charge carriers in the n-region and p-region are produced by thermally generated electron-hole pairs, these minority charge carriers are ...